Java provides a mechanism, called object serialization where an
object can be represented as a sequence of bytes that includes the
object's data as well as information about the object's type and the
types of data stored in the object.
After a serialized object has been written into a file, it can be
read from the file and deserialized that is, the type information and
bytes that represent the object and its data can be used to recreate the
object in memory.
Most impressive is that the entire process is JVM independent,
meaning an object can be serialized on one platform and deserialized on
an entirely different platform.
Classes
ObjectInputStream and
ObjectOutputStream are high-level streams that contain the methods for serializing and deserializing an object.
The ObjectOutputStream class contains many write methods for writing
various data types, but one method in particular stands out:
public final void writeObject(Object x) throws IOException
|
The above method serializes an Object and sends it to the output
stream. Similarly, the ObjectInputStream class contains the following
method for deserializing an object:
public final Object readObject() throws IOException,
ClassNotFoundException
|
This method retrieves the next Object out of the stream and
deserializes it. The return value is Object, so you will need to cast it
to its appropriate data type.
To demonstrate how serialization works in Java, I am going to use the
Employee class that we discussed early on in the book. Suppose that we
have the following Employee class, which implements the Serializable
interface:
public class Employee implements java.io.Serializable
{
public String name;
public String address;
public int transient SSN;
public int number;
public void mailCheck()
{
System.out.println("Mailing a check to " + name
+ " " + address);
}
}
|
Notice that for a class to be serialized successfully, two conditions must be met:
- The class must implement the java.io.Serializable interface.
- All of the fields in the class must be serializable. If a field is not serializable, it must be marked transient.
If you are curious to know if a Java Satandard Class is serializable
or not, check the documentation for the class. The test is simple: If
the class implements java.io.Serializable, then it is serializable;
otherwise, it's not.
Serializing an Object:
The ObjectOutputStream class is used to serialize an Object. The
following SerializeDemo program instantiates an Employee object and
serializes it to a file.
When the program is done executing, a file named employee.ser is
created. The program does not generate any output, but study the code
and try to determine what the program is doing.
Note: When serializing an object to a file, the standard convention in Java is to give the file a
.ser extension.
import java.io.*;
public class SerializeDemo
{
public static void main(String [] args)
{
Employee e = new Employee();
e.name = "Reyan Ali";
e.address = "Phokka Kuan, Ambehta Peer";
e.SSN = 11122333;
e.number = 101;
try
{
FileOutputStream fileOut =
new FileOutputStream("employee.ser");
ObjectOutputStream out =
new ObjectOutputStream(fileOut);
out.writeObject(e);
out.close();
fileOut.close();
}catch(IOException i)
{
i.printStackTrace();
}
}
}
|
Deserializing an Object:
The following DeserializeDemo program deserializes the Employee
object created in the SerializeDemo program. Study the program and try
to determine its output:
import java.io.*;
public class DeserializeDemo
{
public static void main(String [] args)
{
Employee e = null;
try
{
FileInputStream fileIn =
new FileInputStream("employee.ser");
ObjectInputStream in = new ObjectInputStream(fileIn);
e = (Employee) in.readObject();
in.close();
fileIn.close();
}catch(IOException i)
{
i.printStackTrace();
return;
}catch(ClassNotFoundException c)
{
System.out.println(.Employee class not found.);
c.printStackTrace();
return;
}
System.out.println("Deserialized Employee...");
System.out.println("Name: " + e.name);
System.out.println("Address: " + e.address);
System.out.println("SSN: " + e.SSN);
System.out.println("Number: " + e.number);
}
}
|
This would produce following result:
Deserialized Employee...
Name: Reyan Ali
Address:Phokka Kuan, Ambehta Peer
SSN: 0
Number:101
|
Here are following important points to be noted:
- The try/catch block tries to catch a ClassNotFoundException,
which is declared by the readObject() method. For a JVM to be able to
deserialize an object, it must be able to find the bytecode for the
class. If the JVM can't find a class during the deserialization of an
object, it throws a ClassNotFoundException.
- Notice that the return value of readObject() is cast to an Employee reference.
- The value of the SSN field was 11122333 when the object was
serialized, but because the field is transient, this value was not sent
to the output stream. The SSN field of the deserialized Employee object
is 0.